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DYNAMIC SNAP-THROUGH OF IMPERFECT
VISCOELASTIC SHALLOW ARCHES!

N. C. Huang® and W. Nachbar®

ABSTRACT

Dynamic snap-through or dynamic buckling of imperfect
viscoelastic shallow arches with hinged ends is considered under
step loads of infinite duration. Attention is principally devoted to the
influence both of small imperfections and of small amounts of damping,
acting together, on the critical loads. For the problem considered,
the Voigt model is used for viscoelasticity, the deflection is represent-
ed by the first two harmonic modes, and imperfections have the shape
of the second (antisymmetric) mode. Results obtained by numerical
integration of the differential equations show that the critical load
exhibits a jump discontinuity in the limit both for vanishing imperfect-
ion and for vanishing viscosity. Critical loads for slight imperfect
and elzstic (inviscid) arches are slightly higher than these from the
saddle point formula of Hoff and Bruce (J. Math. Physics, 32, 1954,
276), confirming that the formula gives a lower bound on the critical
load. However, critical loads for arches with slight imperfection and
slight viscosity are considerably higher than for the elastic arches.
Another closed-form expression is shown to be in good agreement with
these results. For finite amounts of viscosity, the Lritical loads tend
rapidly to the values obtained for infinite viscosity, which are the same
as the critical loads for quasi-static buckling. Apart from the jump
discoatinuity at zero, the critical load for any viscosity decreases con-
tinuously and monotonically with imperfection.
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Assistant Professor Department of the Aerospace and Mechan-
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Nomenclature

cross section area

Eq. (10)

Eq. (11)

total energy dissipation, Eq. (26)
Young's modulus

effective spring constant for Voigt solid
Eq. (12)

horizontal thrust

moment of inertia of cross section of arch
kinetic energy, Eq. (25)

span of arch

bending moment

local minitnia - see discussion above Eq. (40)
any positive integer

load on arch

Eq. (15)

= R,, load parameter

minimum load for snap-through

Eq. (49)

critical load of Hoff and Bruce, Eq. (43)
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rcp perfect arch dynamic snap-through load, Eq. (32)

Tes quasi-static snap-through - see last column of Table 3

t time

U potential energy, y. (24)
Ue potential energy al critical point

v vertical shear

w(x, t) deflection

W (x) initial deflection
o, x horizontal coordinate
! : y(t) = b1 (t}; first harmonic of deflection

Y, = y(0): rise of arch

Yo value of y at critical point

ycl’ ch critical values of ye ; Eqs. (47a, b)

z (t) = b, (t); second harmonic of deflection ;

zo = z(0): imperfection amplitude ;’jg'

z, value of z at critical point %.
: A approximate shortening of arch length, Eq. (5) j%
n effective viscos.ty for Voigt solid §
n nondimensional viscosity, Eq. (15) .
P mass of arch per unit length
7 T nondimensional time, Eq. (15)




1. INTRODUCTION

In this paper, the dynamic snap-through or dyuauuc
buckling behavior of imperfect viscoelastic shallow arches under a
suddenly applied load of infinite duration is considerad. The critical
load is defined as the smallest magnitude of load under which the arch
car deform to a suapped-through positioa.

The problem of the dynamic buckling of sinuscidal elastic
shallow arches has been studied by off and Bruce [1]* and by
Simitses [2] with analyses bas=d upon the behavior of the trajectories
describing the motion on the potential surface. Since small gecmetric
imperfections, or small disturbing loads or initial velocities, affect
the shape of the potential surfaze only to the second order in small
quantities, it is possible to include the effects of such perturbations by
an analysis based upon the potential surface for the perfect structure.
This analysis fer the arch shows that, if the arch is not very flat, the
critical load of a perfect arch having the shape of sinx will be assoc-~
iated with an asymmetric buckling mode shape sin 2x. This critical

load is obtained from the condition that it is possible for = trajectory

* Numbers in brackets designate refcrences at the end of the paper.
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to reach a saddle point on the potential surface. The critical load is
that load for which the potential energy at the saddle point becomes
equal to the total energy.

Several reasonable vbjecuions have been raised to this
potential surface method of analysis. One objection is that the method
is limited to problems with a small number of degrees of freedom.

The arguments used in the potential surface method are zssentially
geometric, and it is much more difficult to deal with the hyper-
surfaces that are encountered if more than two degrees of freedom are
considered. W=z will not attempt in this paper to generalize this method
of analysis but will, in fact,confine our discussion to & specific system
with two degrees of freedom where the method a2as already proven
feasible.

Another objection, and the one to which the major attention
of this paper will be devoted, is that the saddle point criteria does not
assure that the sclution to the differential equations, with its initial
conditions, does indeed have a trajectory on the potential energy surface
which goes into the saddle point at the critical load. Hoff and Bruce
pointed to this deficiency in the following statement of their paper re-
garding the criticzl value of their load parameter Q, ([1], pp. 284-5):

"If Q has this value one can say that it is possible for the initially
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distnrbed system to be displaced to the stable 'buckled' equilibrium

configuration, (0, e zs), if it follows the appropriate path on the energy
surface.' We have underlined the words possible and if. The signifi~
cance of these words is amplified in the work done in (2], where the

Hoff and Bruce critical load is not regarded as a rigorous critical load

but as a lower bound or minimum possible critical load for dynamic

snap~thrcugh of the arch.

The question then arises: if the saddle point critical load

is a lower bound on the true critical load, how good an approximation
to the critical load is it? To investigate this question, it is necessary
to integrate the governing differential equations, to look for the minim-
um load at which the solution exhibits snap-through, and to compare
this minimum load with the predictions of the potential surface analysis.
In carrying out this program, we cannot confine ourselves to perfect
arches of sinusoidal shape. Indeed, it is readily seen that if the
differential equations and subsidiary conditions are symmetric, then
the solutions obtained will be symmetric, and the trajectories of these
solutions could never approach a saddle point that is associated with an
unsymmetrical mode. It is necessary then to consider imperfections
or, at the least, to consider the limiting behavior of an imperfect
arch as the amplitude of the imperfections tends towards zero. A more

elaborate analysis [2] has already indicated that second harmonic (or
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first antisymmetric) imperfections will have the greatest effect on the
critical load and so, in the present paper, only the first and second
harmoanics are considered to describe the initial shape and subsequenc
deformaticn of the arch. |

Viscoelasticity is introduced here because it is a more
realistic material description for dynamic procblems than the assumption
of ideal elasticity, and also because it often makes the analysis less
ambiguous, as is illustrated by our study of dynamic buckling of a
single degree-of-freedom structure [3]. Perhaps more important,
however, is that we want to see whether the critical loads obtained for
the viscoelastic material in the limit as the viscosity parameter tends
to zero are the same as the critical loads obtained under the same con-
ditions for the elastic material in which the viscosity is equal to zero.
In the case of imperfections we already know that the limit of the
critical load for vanishing imperfections may not be equal to the
critical load for zero imperfections. We then may have a jump between
the limiting value and the value at zero. We want to see whether such
a jump is exhibited also with respect to the viscosity parameter.

We will also present, in addition to the investigations
already described, results on the effects of finite imperfections and
finite viscosity on the critical load. In this paper, we will discuss all

these questions only with regard to the following problem: the
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arch is considered hinged at both ends; the loading is sinusoidal in

shape, and is of constant magnitude and infinite duration in time; the

L
A R WMWMMWWMM v
¥ N

material of the arch is considered to be a Voigt solid.

2. BASIC EQUATIONS

Consider a shallow arch of span L, as shown in Fig. 1.

The cross section of the arch is assumec to be uniform along the span,
with cross-sectional area A and moment of inertia I about the central
axis. The load q(x) per unit length is suddenly applied at zero time
and maintained at constant magnitude thereafter. At time t, the central

axis of the arch, having original height wo(x), is deformed to a height

w(x, t). With use of d*Alembert's principle, the dynamic load is -
2

q(x) + p S-?;!- positive in the -w direction, as shown in Fig. 2, where

p is the mass of the arch per unit length. If we denote the horizontal

thrust, vertical shear and bending moment by H, V and M, respect-

ively, the equations of equilibrium can be obtained directly from Fig. 2:

§

w4 ®

V' = -(q+ pwW) (1)
and
M’ = V.-Hw (2)
¢ - O . _ ©
where () = -a—x'() and () = ‘5—{()
. If the arch is elastic, the Euler-Bernoulli assumption gives .

. M = EIl{w -wo) (3) :




where E is Young's modulus. From Eqs. (1), (2) and (3) the follow-

ing equation is obtained:

EI(w" - wo'm) + Hw" +q+p‘35 =0 . {4)

For shallow arches, the shortening of the length of the

arch during deformation can be written approximately as

a3 TLEY - () Jes

and the horizontal thrust H can be expressed approximately as a

R S RGN B

constant, viz.

H = . (6)

From Eqgs. (4), (5) and (6), we then obtain

EI(WM - WO") + w’% E jL[(\NQ')2 - (W')a]dx+q+P; = 0.
° (7

B B oo ¢ gttt

For an arch with both ends hinged, the deflection and the
bending moments at the ends must vanish. The boundary conditions are:
wo(O) = wo(L) = w(0,t) = w(L,t) = 0 , {8)
and

w' (0,t) = wo”(m; w' (L, t) = “'o"L’ . (9)

These conditions are satisfied termwise if we put

2 o
w_(x) = 2(-};) I a_sin -’-‘-‘I'J—" (10)
n=1

and

Jt
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wix,t) = 2 (== h> b (t) sin
(x) ool

nwx
L’

(11)

where the deflections have been normalized with respect tc the
radius of gyration (I/A) 3 ¥ so that the constants a and the functions
bn (t) are dimensionless. Further, let the load intensity be

represented by

a(x) = I f sin Lrx (12)
n=1l

Substituting Eqs. (10), (11) and (12) into Eq. (7), we obtain

1/2 .
n* E(b_ -a)+nbEJ)31[3 (bJ - a, ”*z«n (—) fn+2pbn]:0

for n=1, 2, ... . (13)

We shall use the Voigt model to represent the viscoelastic
property of the arch. The elastic constant E in Eq. (13) is therefore
replaced by the differential operator Eo + n-aaT , where Eo is the
effeciive spring constant and 1} is the effective viscosity of the

material. Consequently, Eq. (13) becomes
n' (Eo n %) (bn - an) ¥ nabn (Eo ¥ ﬂ%)j%l [ja (bja ) aja)]

. W3 ,
+ 3o [(3) 6+ zeb ]

for n-1, 2, ... . (14)

Let us introduce the following dimensionless quantities
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x =G (gFs) md 0= 30 . (15)
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for n=1, 2, ... . {16)
We shall assume that the load distribution is sinusoidal

and consider only the first and second harmonics for the initial and

G i o g o

the deformed shapes of the arch, i.e.:

a =b =0 for n#1lor2 and ano for n# 1.

Put y = bl, z = ba, Y, =2, z = a, and r = Rl. Substitution into
Eq. (16) gives the governing differential equations for the motion of the

arch under these constraints:

§+x[(1+2y2)9+ 8yzz']+y-yo+y(y3 -y°a+4za-4z°3)+r =0,

(17)
and
zZ+ 81[2 (1 + Zzz) z + yzy] + 16 ( - zo‘) + «tz(y2 - y: +4z° - 4z:) =0.
(18) - 9
8
,){:;; g . » -
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Solutions to these equations will be sought for the initial conditions:

y) =y, z(0) =z, y(0) = 1}0 and z(0) = z‘o . (19)

We can, without restricting the essential problem, consider Yo > 0,
z Z 0and r £ 0.
o
The critical points of Eqs. (17) and (18) are obtained by
setting y=y=z=z=C in these equations. The critical points defined by

the pairs of values (ye, ze) satisfy the following equations simultan-

eously:
2 2 2 2
- - + - =
Yo Yo + Ye (ye v, 4ze 4zo ) + r o , (20)
) 2 2 2 23
- + - - = .
4 (ze zo) z, (Ye vy, ot 4ze 4zo ) 0 (21)

After ze is eliminated from Eqs. (20) and (21), we obtain

3
+ _ _ - 2 _ 2 _ a) + 2.3 _ 9.
(3 Ve Yo r) [r ¥ ye Jro+ ye (ye Yo 42o 642o Ve 0

(22)
The energy equation can be derived from Eqs. (17),
(18) and (19) by integration and addition. It can be written as
U+K+D-=20 . (23
where
U = potential energy
1 2 2, 17 2 P) 2 2,1°
B CARARICEER S | FARR AR TG )] +
trly-y); (24)
9 —~
; !
P “i.; '?’1 . :;
S ‘f‘;{f}—‘ K
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K = kinetic energy
= Lfee -a) Lz 53}
= 2(y - yo + > (z zo ) ; (25)
and
D = total energy dissipation

t
nj [y2 + 1622 + 2(yy + 42z2)°]dt . (26)
s}

« .W.,uwnw,mmw s uBl

Note that the datum of the potential surface U has been chosen so

that the initial value of U is zero. Equations (20) and (21} defining
the critical points of Eqs. (17) and (18) are the same as the equations
U ou .

'a—y- = 0 and 3z - 0, respectively.

3. PERFECT ARCHES WITH PERFECT INITIAL CONDITIONS
(z =z = 0)
o o

i ~‘*iau»‘u:‘ﬂhki¥#hn» i 1 sl Wwb' NIRRT S

From Eqgs. (17), (18) and (1Y), we find that unsymmetric
deformaticn of the arch can be caused by small antisymmetric initial
velocities or imperfections in geometry. On the other hand, if the
initial conditions are entirely symmetric, i.e., if z = io = 0, we
can conclude from Eg. (18) that z(t) = 0. Therefore, under the
constraints assumed above, the deformation of a perfect sinusoidal
arch under perfect initial conditions remains symmetric, and the motion
of the structure has only one degree of freedom which is described by

y(t). The differential equation and initial conditions are taken as

1. . N S 4R
it s e W oo vt MMICLLLLL RDRRNE ..




yra+2y)y +y-y +y3-yiytr=0 . (27

y(0) = v, and y(0) = 0 . (28)

The critical points in this problem are y = 0, y = Ve

where Yo is a root of the following cubic equation (corresponding to

the roots of the square bracketed term in Eq. (22) when z, = 0):
vy P+t -y?y +r-y =0 . (29)
e o e o

Typical solutions of Eqs. (27) and (28) are shown in
Fig. 3. These solutions were obtained by numerical integration (see
part (b) below). For positive a6 these curves oscillate about one of
the stable equilibrium points (which are spiral points in the phase plane)
with decreasing amplitudes because of continuous energy dissipa,i:ion.s
When the load parameter r passes through a critical value® r, there
occurs a sudden diversion of these curves from the neighborhood of
one equilibrium point to the neighborhood of the other.

For problems described by a single variable, the analysis

of dynamic snap-through is facilitated by the use of potential curves.

® When the value of X is very small, the structure may snap back
after the snap-through (see [3]).

In order to be able to distinguish the critical load values obtained

by numerical integration of the differential equations as opposed to

closed-form expressions for T, obtained for particular cases by

use of the potential surface, we will adopt the convention of

identifying the latter by special subscripts (e. g. Tepr T oo T
. . cm

T, s)’ and we wiil reserve the notation rc for the former.

g
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Equation (24) becomes

AP TS 00 DS TR IR e

U=3-y)* +30° -y +ily-y) . G0

e,

o

H
H

Using r as a parameter, we can plot U as a function of y, as
shown in Fig. 4. A discussion of the application of the potential
curver for dynamic buckling analysis in a dissipative system with a

single degree of freedom is given in [3]. In the following parallel

%
E
=
H
2
g
§
2
E
4
i
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Z
Z
ES
3

discussion, snap-through, as a function of x, is discussed as three
cases.

(a) Elastic case (X = 0).

CEYTYTY TR + T

i

No solution of Eqs. (27) and (26) can produce a positive U, o .

in view of Eq. (23). With r increasing from zero, then, the

B
;)
3
A
4
=
ES
z
H
=

minimum of the potential curve on the left of the U axis (Fig. 4)

will not be reached by a solution until the local maximum value of

U to the right of this minimum satisfies the condition Ue 0.

AR ek o

Therefore, the critical load can be obtained by setting the value of

b
L]

AR Rt ki T

U equal to zero at the equilibrium point at which this maximum

is attained. This gives, from Eq. (30),

r = -‘l;(yo- ye)[z + (ye'l- yo)a] . (31)

By eliminating Y, between Eqs. (29) and {31), we obtain an

expression for the critical load r p: i =

c . % .
SRR I EACEANCARDICARD o IR CRN © S

i2
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The values of rcp are plotted against Yo by one of the solid
lines in Fig. 5.

From Eqgs. (29) and (30), the potential energy U at all
critical points is found to be

L (ye - yo)3[3 (ye * %Yo)a ¥ % (3 B zyoa )] ’ (33)

If y_ is less than -lz-(ﬁ)‘/a = 1.224, Eq. (33} shows that U_ is

negative at all critical points; hence, the arch always deforms

to the inside-out position without snap-through.

(o) Viscoelastic case (0 < a < =), .
f % ) For the viscoelastic case, it is necessary to use numerical R
w ! methods to solve the differential equation, Eq. (27), with the initial

condition, Eq. (28). A Runge-Kutta-Gill method {4] has been used
ks for this purpose. The critical load T, ia determined by the con-

dition that the arch begins at that load to deform to the snapped-

through position. The results for cases % = 0.1 and 0.2 are

SUTEREVA SRR SR RN

shown in Fig. 5 by solid lines.

A certain amount of energy is dissipated before the struc-

1 ture reaches the point of snap-through. Hence, the critical load

|
§

for the viscoelastic case is higher than that in the corresponding
elastic case. In the viscoelastic case, there is also 2 lower limit

for Yo such that, for any value of Y, less than this lower limit,




the arch deforms to the inside-out position without snap-through.

AT (WY

{c) Quasi-static case (X = »).

The quasi-static case was first studied by Fung and

Kaplan [5]. The same results are obtained here in the limit of

infinite viscosity. When % = «, snap-through can occur only
when the maximum of the potential curve (Eq. 30) becomes a
3°u

point of inflection, i.e., at y = Yo -a;-a- = 0. From this con-

dition we have

Va 3

| AL T o0 ]

. The quasi-sgtatic critical load r.g can then be derived from g
% -

Eqgs. (29) and (34): 5

¥z ;

. 2 .

Tes - Yot 9 (3}/2(y° l) : (35) -

AR L Y0 R
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I\ Fig. 5, T . is plotted against Y, by a solid line. Note

that when Y, < 1, there cannot be a point of inflection on the

potential curve, Hence, for Y, < 1, the arch will deform to

an inside-out position under any positive load.

4. ARCHES WITH INFINITESIMAL GEOMETRIC IMPERFECTION
(z =0t
O

R s ol LSRR8,

B
o

The perfect arch discussed in the last section is an overly &z
idealized model. It is known that the critical load may change . -~

drastically due to the effect oi small geometric imperfections.
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General studies of this be:havior for elastic structures have been made
by Koiter [6] and Budiansky and Hutchinson [7]. For our study, we
shall again assume that )'ro = z'o = 0 and consider the following
three cases.

(a) Elastic case (& = 0).

The effect of infinitesimal geometric imperfections for
the problem of elastic shallow arches was first studied by Hoff
and Bruce [1] with the use of the potential surface for the perfect
arch. Their results are to be obtained here through consideration
of the limiting behavior of an imperfect arch with vanishing
imperfections.

When the imperfection zo is small, so that zoa << Yoa’
the critical points (ye, ze) can be determined by the following
two simultaneous equations derived from Eqs. (20) and (21):

o , (36a)

2 3 2
ye-y°+ye(ye -yo +4ze)+r

4 (ze i Lo) t oz, (Ye3 B Yoa ¥ 42:): ° - (36D)

Consider first that Y, is some fixed number and that
z tends to zero. In the limit as z tends to zero, z, either
approaches zero or approaches a nonzero limit value. If z,
approaches zero, then Eq. (36a) reduces to Eq. (29). If z,

approaches a nonzero limit, however, then Eq. (36b) becomes

15
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When Y, £ 2, we see that the expression in parenthesis in
Eq. (37) is positive. Equation (37) would then imply ze = 0.
Hence, the limit of ze as zo tends to zero can be different
from zero only if Y, > 2.
Equations (36a,b) can be combined to give

z, (3ye+ Y, - r)- 4ye7.o =0 .
If the limit of z, as zo tends to zero is not zero, this
equation gives in the limit

I 3 >
ye = 3 (r = Yo) ’ yo = z

and it then follows from Eq. (37) that

(37

(38)

1 1 Ya
z, = :!:-Z-[yoa-4-3(r-yo)3] . VOEZ . (39)

Of the three critical points on the y-axis, two are local

minima and one is a local maximam. We shall denote the local

minima by M1 and M_, where M1 is the minimum closest to the

initial point. Equations (38) and (39) define two saddle points,

svmmetric about z = 0.

From Eq. (24), the potential energy for small z is

U = %(y-yo)a + 82° +%(y3-y: + 4za)a+ r(y-yo). (40)

The potential energy U = Ue at the saddle points is found from

16
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Eqgs. (38), (39) and (40) :

1 3
U - 6[(r-4yo) - 24] LY E 2 (41)

Under small load, the trajectory of the motion on
(y, z) plane would move in the neighborhood of M . The neigh-
borhood of M, is not accessible until the load is increased
sufficiently so that there will exist a trajectory leading to the
neighborhood of 14, and along which U is nonpositive. A
necessary condition for the existence at such a trajectory is
given by consideration of the saddle point on the potential sur-
face. The considered trajectory is seen to be impossible
unless r is large enough so that the saddle point value of Ue

of Eq. (41) is nonpositive. Hence, the critical condition of

Hoff and Bruce for snap-through is

u =0 , (42)
at the saddle points, and the associated critical load is found

tobe r
cm

= - 6 1'12 2=
r 4y° 2(6)" ", v, 2 2.04 (43)

When Eq. (43) is used to substitute for r in Egs. (38)
and (39), the coordinates of the saddle points at r = rcm are

found to be

2
Y, = ¥, - 3 (&° (44a)

ngyilf
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(6)1/21! s 1/3
z = #+ —-—3-°-- . (44Db)

[

Equation (44b) shows that the saddle point does not exist if

rasm—

y, is less than (5/(6)¥%) = 2.04. At y_= 5/(6)/*, Eqe. (44a,b)
. _ - 1/2 - 1/2 . ey s '

give z_ = 0, Ve 1/(6) at T 8/(6)7°. This point is also a

root of Eq. (29). It is the critical point which corresponds to the

local maximum of U, as is discussed in case (a) of Section 3.

Moreover, the value of U at that local maximum is zero. ilence,

- /3 _ _ /2
at y = 5/(6)"", we have T rcp = 8/(6)7°, the value of rcp

P N N

being computed from Eq. (32). -

Consequently, Eq. (43) holds only for Y, > 2.04. For

ey

Y, < 2.04, the critical load for the slightly imperfect arch is the

L

same as that for the perfect arch; itis rcp as given by Eq. (32).
In Fig. 7, the result of Eq. (43) is shown by one of the
dotted lines. It is seen that, if rcm is an accurate measure of

critical load, then for Y, > 2.04 the critical loads drop consider-

I AU SRR

ably due to the effect of small antisymmetrical imperfections.

Since the above method of determining the critical load of

sy

an imperfect arch does not examine the actual motion of the

structure, it does not enable one to assert that the trajectory will

Ll g

pass through the saddle point even if Eq. (42} is satisfied. Equa-
tion (42) is a necessary condition for snap-through, but it is not a

sufficient condition. ]
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In order to clerify this point, we have obtained solutions
to Eqs. (17), (18) and (19) numerically by using very small
values for the geometrical imperfection parameter z in the
range 10°% to 10™°%. The critical loads obtained from the
numerical solution for z_ = 10" and various Y, 28 well as
those from Eqs. (32) and (43), are shown in Table 1 and Fig. 6.

It is found that the calculated T, is in agreement with the pre-

dictions of Eq. (43) to within an ervor not exceeding a few percent.

These results confirm that it is impossible to produce
snap-through if the load is lower than the value Tom given by
Eq. (43). Consequently, the result of Hoff and Bruce furnishes

a lower bound and a good approximation to the critical load for

elastic arches with small imperfections, as was implied in [2]. The

following observations were made from the numerical results:

(i) the arch may oscillate nonlinearly for a period of time before
it spaps through; (ii) after snap-through, the arch may snap back
to its original shape.

If, for a fixed Y, > 2.04, the calculated critical load rc
is sought for very small values of z anomalous results may be
obtained. Typical of such results are those shown in Table 2 for
y =4.5. Values of r_ appear to increase as zZ, gets amaller.

o

The reason for this is that the potential surface over which the

19




trajectory travels is very 'flat". This follows because, for small

z , —aﬂ- at z =2z _is8 O(z ). Hence, in the absence of damping, the
o' oz o o

arch can oscillate for very long periods before snap-through. If

the calculations on the computer are not continued long eaough

for these very small values of Z then we run the risk of not

discerning motions which are actually buckled motions, simply

because they are not observed for long enough time.

{b) Viscoelastic case (0 < X < =)

Values of T obtained by numerical solution of Eqs. (17),
(18) and (19) with » = 0.1 and % = 0.2 are shown in Fig. 7
by dotted lines for very small imperfections (zo = 10-‘ was the
value usedj and by solid lines for zero imperfection. The closed-
form expressions obtained for the perfect elastic arch (Eqs. (32)
and (35)) are likewise represented by solid lines, while those for
the infinitesimally imperfect elastic arch (Eq. (43) and Eq. (48)
below) are represented by dotted lines. As was noted in (c) of
Section 3, the limit # = » gives the same results as for quasi-
static loading of : n elastic arch.

These curves show that for finite values of %, and fer
values of Yo above a certain lower limit, rc drops markedly with

the introduction of a small imperfection. The lower limit for Y

which is 2. 74 for the elastic arch, is seen to be higier for nonzero X.

20
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Moreover, the curious behavior exhibited in Table 2 for the
elastic arch with very small values of z is not shown for the
viscoelastic arch; in the latter case, the limit value of rc is
approached continuously in the calcularions as z_ goes to zero.
(cf. also Fig. 8).

For values of Y, not much above the lower limit, the
dotted curves for ¥ = 0.1 and ¥ = 0.2 in Fig. 7 are seen to
merge rapidly into a calculated dotted curve for % = « in Fig. 7.
Other data for smaller values of X, not shown in the figure,
exhibit the same behavior. The data for the elastic arch, however,
foliow close to the curve Tem for all Y, > 2.04. The transition
between these two types of behavior occurs at values of x = 10~

but computations are again difficult for this regime.

{c) Quasi-static case (X = =)

Fung and Kaplan ([5], pp. 14 and 15} censidered in some
detail the snap-through of shallow arches due to antisymmetric
bifurcation in quasi-static loading if Y, is greater than
;2 (’22)1/2 = 2.34. To render the present paper reasonably complete,
we shall derive their results from our equations following the
approach given in [2].

For quasi-static equilibrium at a point (ye, ze), under a

load r, Eqs. (20) and (21) must be satisfied and in addition the

21
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potential energy U must obey the following stability condition there:

3%y ¥F®U 3y 2
5% 537 - (357 ) > 0 - (45)

For z vanishingly small, we find from Eq. (24), the following partial

derivatives at points with z = 0:

3°U 2
= 1 + 3 - )
Yy dy y Yo

U

]

zz 0z=2

U

m
n
(=]

zy dydz
‘The condition (45) can then be written as

(1+3y2-y03) (y‘ -y 4 4)> o . (46)

U U
YY zz

If r is sufficiently small, so that Yo = Y, is small,
the inequality (46) is evidently satisfied. As r increases and Y,
decreases, either Uyy or Uzz will become negative, indicating a

loss of stability. The critical values of y, are called Yei and Ye2 -

Yy -1 ya
= /.9
Uyy = 0: Ye1 \ 3 ) (472)
1/2
— . = 2 -
Uzz = 0: Ye2 (yo 4) (47b)
It is easily verified that at Y, * %(22)1/3, we have ycl = Yepo and
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that y 2 y ., for y < L (22)1/2. Consequently, the critical
c2 cl o 2 '
. . 1 1/2 o s X 1 y2
< = > - .
value of Yo 18 Y, if Y, 2(22) , and it is Yoo if Y, z(22)
The corresponding values of r, with z vanishingly small, are
obtained by substitition of Yoy and Ye2 for y into Eq. (29). There

is then obtained:

1 1/2
> (22) , (35)

"
"
«
[¢]
-+
()
N
w
<
1A

cs

% @2Y? . (48)

"
"
~
-+
w
~
«
o
'
£-Y
~
<
v

cs (¢}

The first equation above is identical to Eq. (35), which was derived
on the basis of symmetrical buckling. Equation (48) is the result of
Fung and Kaplan [5].

Quasi-static snap-through for this problem is summarized
in Table 3. It may be inferred from these results that the appearance
of the cross sections of the potential surface close to the y-axis is that
of a valley for Y, < % (22)Y/? which changes to a ridge near

. 1 1/2
- > = /2.
Ye YcZ if Yo 2 (22)

5. UPPER BOUND FOR ELASTIC ARCHES WITH INFINITESIMA L
IMPERFECTION

In contrast to the results for the perfect elastic arch, for
which an exact closed-form expression (rcp, Eq. (32)) for the critical

load can be determined for all values of y_(y_> % (6)]/3) at which

23
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snap-through can occur, the critical load for an infinitesimally
imperfect arch cannot be represented in closed form for Y, > 5/(6)1/2
It has been shown in the preceding section that Tem’ Eq. (43), is a
lower bound and generally a good approximation to r for Y, > 5/((‘1)1/a
An upper bound for r  was proposed in [2], and a summary of the
results obtained there is as follows.

For any Y, > 5/(6)1/2 consider the load Teg which causes
the saddle points to disappear, i.e., the load which causes the z, of

Eq. (39) to vanish. It is found that this load is

- 3 _ 4412
rcg v, * 3(yo 4) . (49)

Equation (49) has the same right-hand side as Eq. (48), but the
interpretation here is different. When the saddle points disappear,
they coalesce with one of the critical points on the y-axis. For
Y, < % (22)1/ 2 this critical point is8 the local maximum, but for
Yo > % (22)1/3, the critical point is the first minimum M1 . When
this occurs, M, is no longer a stable equilibrium point of the potential
surface with y and z coordinates, and dynamic snap-through must
eventually occur.

A critical condition will occur when either the potential U
is zero at the local maximum or M, becomes unstable. The first

condition is governed by rcp and the second by rcg' The upper bound

4
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on rc is determined by whichever of these two values, r':p orr ,
is the least for a given Yo

These results,and the other results presented here on
dynamic buckling of an infinitesimally imperfeci elastic shallow arch,

can be suinmarized as follows:

Y, = 1.224 no snap-through
1.24 < y = 2.04 r = r

o c cp

(50)

2.04 <y = 3.19 r = r =

o cm c cp
3.19 > y T S r Sr

o cm c cg

A comparison between this upper bound and the calculated
values of T, is shown in Table 1 and graphically in Fig. 6. The
upper bound is considerably larger than T The results of the present
investigation, as discussed above in part (b) of Section 4, place a new

interpretation on this upper bound, however. It is now seen that the

upper bound values for T, in (50) may be those actually approached by some

arches with very small viscosity (x = 01) while the lower bound values
for r, in (50) are those actually approached for elastic or zero vis-

cosity (Xt = 0) arches. In both cases we must consider that the arches

are slightly imperfect (zo = o%).
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6. ARCHES WITH FINITE GEOMETRICAL IMPERFECTION (zo > ot)

For the case of finite geometrical imperfections, the
critical loads can be found from the numerical solution of Eqs. (17),

(18} and (19): The critical loads for z, = 0.25 and z'0 = 0 are shown
as dotted curves in Fig. 5. The critical loads for the X = » curve are
obtained from the maximum point of the r - Y, curve evaluated from
Eq. (22).

As compared with the case of the perfect arch, the critical
load is reduced considerably due to the imperfections. The reduction
increases with the value of Y, The effect of finite imperfections for
various values of Y, is shown in Fig. 8. As expected, the critical
load decreases as the value of initial imperf:ction increases. In accord

with our previous discussion, a discontinuity in the critical load is

found at z, = 0 for the cases Y, = 3 and 4 but not for Y, = 2.

AU

7. PRINCIPAL CONC LUSIONS

In summary, we have observed several types of discontinuous

4
2
]
3
3%
=5

behavior of the calculated snap-through load r.asa function of the

imperfection amplitude z and the viscosity parameter x. This be-
havior depends also upon the rise Yy, 28 is discussed throughout the
text, but in order to focus on the essential results, we will discuss the

function T, (zo, 1) within the range of Y, upon which we calculated.
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a) The introduction of an '"infinitesimal" imperfection
. . . . +
causes a jump or discontinuous drop in r T, (0, n) < r, (0, ®) for

X 2 0. Larger imperfections lower r, continuously (Fig. 8).

b) The critical loads rC (0+, 0) were found to be close to
but slightly above the Hoff and Bruce value (Eq. (43)) for the elastic

arch (see Table 1 and Fig. 6).

c) The critical loads T, (0+, 0+) were found to be between
the upper bound loads (Eq. (50)) by Simitses and the lower bound loads
(Eq. (43)) by Hoff and Bruce. A rapid increase of the critical load is
observed by introducing very small viscosity, i.e.,

T, (0+, 0+) > rc(0+, 0), (see Fig. 6).

d) For finite values of x and zo (Fig. 7), rc increases with
increasing X to a maximum value determined by the quasi-static

snap-through load.

e) Computation of T, for both z and % extremely small
can lead to anomalous results for rc because the arch can

oscillate for a long time before snap-through.

A related problem of dynamic buckling of sinusoidal, simply-
supported shallow arches has been considered by Lock [8]. In his

analysis, Lock considers what is called in the present paper the

27
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perfect arch, that is zo = 0, but he includes infinitesimal initial
antisymmetric velocity disturbances, that is z'o of the order of

5 X 10-3, which are not considered here. These antisymmetric
initial velocity components serve in Lock's investigation to produce
antisymmetric snap-through. Moreover, in Lock's analysis, energy
dissipation is introduced by external damping rather than by material
viscosity as is done in the present paper.

Since the conditions of imperfection, load application and
damping used in Lock's work and the present work are different, there
is no reason to expect the same conclusions. The following points can
be made in comparison of his results and our results:

(1) in the elastic case, Lock finds that the dynamic buckling
load T, has a discontinuous jump at v, = 4.375. For Yo > 4.375,
the value of r_ can be higher than the quasi-static buckling load

rcg' This behavior is not seen in the present case for Y, < 4.5,

{(2) In the case of small damping, Lock finds that the buckling
load for v, 2 4.0 is essentially the quasi-static buckling load. The

same result is also observed in our calculation (see Fig. 6).
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Fig. 1.

Geometry of the Arch.
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